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ABSTRACT – The number of flights that occur every day around the world is extremely large. 
Each and every one of these flights both private and commercial need to be finely scheduled for 
many reasons including safety, timeliness, and operational efficiency. In the commercial world, 
scheduling not only the flights, but the captains to operate the flights is important to maximize 
profit. An approach to scheduling captains on flights is given here using discrete optimization 
methods as well as a post-optimality analysis is shown here. The results show a scheduling 
formulation method for scheduling pilots within the FAA guidelines. 

1. Introduction 

The airline industry is constantly trying to 
find ways to maximize profit, while 
minimizing costs to customers to increase 
patronage. These market pressures are acted 
against by requirements that are put forth for 
the safety of travelers, crew, and public by 
laws and regulations. Such restrictions 
include maintenance protocols specifying 
the regularity that planes must be inspected 
as well as guidance on pilot flight length 
times and work hours. This second group is 
what we will focus on here. The demand for 
flights is generated by the airlines for 
various sophisticated methods. By looking at 
historical data and forecasted data, the 
companies can generate a list of flights that 
need to be flown, or at least, can be flown at 
a profit. Finding captains for the flight then 
incurs an addition cost of operation. Here we 
will take a given list of flights and 
requirements, formulate into a binary linear 
model, and give a general solution 
framework for understanding this problem.  

 

II. Literature Review 

Linear programming has been famously 
applied to scheduling problems throughout 
its history. Applications include nurse 
scheduling (Brigitte Jaumard, 1998), 
production scheduling (Bowman, 1956), and 
even smart home appliances. (Kin Cheon 
Sou, 2011). There is a large corpus of work 
in this area. With particular regards to 
flight/flight captain scheduling, there is 
work done with scheduling plane landings 
with mixed integer zero-one formulation 
that created both an optimal solution and 
heuristic approach (J. E. Beasley, 2000) as 
well as air freight scheduling where 
schedules must be determined in advance 
(Julia L. Higle, 1996). A formulation is 
given here which takes into account limiting 
factors such as the flying hours an aircraft is 
limited by, as well as the routes that pilots 
are allowed to take. For insights on crew 
scheduling, there has been work done to 
look at the ways flights and crews can be 
scheduled in conjunction to minimize costs, 
such as in (Oliver Weide, 2010) However, 
the strategy applied here is an iterative 



solution. Decomposition methods have also 
been investigated to simultaneously 
schedule both flights and crews (Jean-
Francois Cordeau, 2001) 

III. Statement of the Problem 

The problem we are trying to solve is the 
gap between a list of flights that an airline 
has deemed required/desirable/profitable to 
fly in conjunction with a database of pilots 
and their hourly rates of employment and a 
prescriptive assignment that minimizes the 
cost for the airline. That is, given a list of 
flights and pilots, we seek to provide a 
binary integer linear programming 
framework for assigning the pilots in an 
optimal fashion. 

IV. Assumptions 

To aid the effectiveness of this work, the 
following assumptions are made. First, we 
will use “hub scheduling” in which an 
airline combines all pilots that share a 
particular home location into a single list. 
This ensures that the flights resemble a 
circular path and return at the home. Second, 
to ensure linearity is not violated, we will 
assume that a pilot must be returned to fly 
again. This means that flights will not 
overlap. At larger scale this is not viable or 
applicable but for our short-term modeling, 
we will still be able to gain insight based off 
of this. We will also assume that there are no 
delays. This can be justified by assuming 
that any delay time is put into the model as 
part of the flight time. A simple refinement 
procedure of padding times with samples 
from delay distributions can correct this 
quickly. 

 

 

V. Notation and Mathematic 
Formulation 

To that end, here we will investigate a linear 
programming model which takes as its input 
a list of flights, with information, and a list 
of pilots, also with information, and outputs 
an assignment prescription. We will utilize 
binary linear optimization; the decision 
variables will be entries in a P by F matrix, 
where P is the number of pilots and F is the 
number of flights: 

  

Table 1: An example table of Flights with ID number, Flight Name, 
Departure Time, Arrival Time, and Flight Time 

ID Name Depart Arrive Time 
1 F6 20 27 7 
2 F2 26 31 5 
3 F8 65 68 3 

 

 

Table 2: An Example of Pilots with Name/ID, Hourly Rate 

Name Rate 

P1 $45 

P2 $53 

 
Table 3: An example of an Assignment Matrix. Pilot 1 will be on 
flights F1 and F3, Pilot 2 on F3 

 F1 F2 F3 
P1 1 0 1 
P2 0 1 0 

 

Formulating this into an LP problem we 
have:  

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ��𝐶𝐶𝑓𝑓𝑟𝑟𝑝𝑝𝑥𝑥𝑝𝑝,𝑓𝑓
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Subject to: 

  



(1)    ∀𝑓𝑓 ,�𝑥𝑥𝑝𝑝,𝑓𝑓 ≥ 1
𝑃𝑃

𝑝𝑝=1

 

(2)    ∀𝑝𝑝 ,�𝑥𝑥𝑝𝑝,𝑓𝑓𝐶𝐶𝑓𝑓 ≤ 60
𝐹𝐹

𝑓𝑓=1

 

(3)    ∀𝑑𝑑 ,∀𝑝𝑝, �𝑥𝑥𝑝𝑝,𝑓𝑓𝐶𝐶𝑓𝑓𝑑𝑑 ≤ 8
𝐹𝐹
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(4)          𝑥𝑥𝑝𝑝,𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑏𝑏  

Where the variable xp,f  reflects in binary, if a 
pilot p will be on flight f, P is the number of 
pilots, F is the number of pilots, rp is the 
hourly rate of pilot p, tf is the time that flight 
f takes to fly, and d is a binary unit vector 
indicator reflecting that flight f is on day d. 

These constraints come from basic 
scheduling principals of scheduling as well 
as FAA regulations. First consider (1) this 
guarantees that each flight has a captain, by 
requiring at least on decision variable is 
positive. It could be the case the there are 
two captains on a flight for the purpose to 
travel or as a co-captain, a case that this 
work could be extended to investigate.  

The second constraint, (2) maintains that 
captains must not fly more than 60 hours in 
a 7-day period. Since the scope here is to a 
short period, this is easily done. The third 
constraint requires the use of indicators to 
signify the day. This lets us ensure that 
pilots do not fly more than 8 hours in a day. 
These two constraints can be found in the 
FAA pilot regulations. (FAA) 

The fourth variable constraint requires that 
all of the decision variables are binary. A 1 
reflects that a pilot is schedules, a 0 reflects 
the opposite. This is a natural way to 
represent this problem and can be useful in 
communicating the results. 

VI. Other Formulation Considerations  

The simpler versions of this case can be 
solved by hand, and we run the risk of over 
engineering in such instances. We would 
expect an optimal solution to resemble if- 
else structure; where we simply select the 
pilot with the lowest rate, check their 
availability, as per the FAA guidelines, and 
assign them if possible. The is depicted in 
Figure 1.

 
Figure 1: A figure depicting an assignment algorithm. 

Another way we could formulate an 
assignment algorithm is by considering the 
pilots as a set, taking the subset of eligible 
pilots, and taking the one with the minimum 
rate. This results in a bridge between this 
algorithmic approach and the linear 
programming approach already established. 

It is reasonable to assume that the binary 
programming method will yield the same 
results of these two methods, since the 
optimal solution is found by all.  

VII. Results and Discussion  

Here is a sample list of flights and pilots. 

FLIGHTS 
NAME Depart Arrive Time Day 
F1 0 6 6 1 
F2 8 10 2 1 
F3 16 24 8 1 
F4 25 30 5 2 
F5 30 32 2 2 
F6 49 56 7 3 

Check if Flight 
will Exceed 

Weekly 
Maximum

Check if Flight 
will Exceed Daily 

Maximum

Select Pilot with 
Lowest Hourly 

Rate

Pi
Pi Pi

Pi+1Pi+1



F7 61 65 4 3 
F8 66 74 8 3 
F9 75 82 7 4 
F10 88 93 5 4 

 

PILOTS 
NAME Rate 

P1 67 
P2 65 
P3 54 
P4 41 
P5 54 

 

We take these two as inputs and generate the 
following assignment matrix: 

DVS F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

P1 0 0 0 0 0 0 0 0 0 0 
P2 0 0 0 0 0 0 0 0 0 0 
P3 0 0 1 0 1 0 1 0 0 1 
P4 1 0 0 1 0 1 0 1 1 0 
P5 0 1 0 0 0 0 0 0 0 0 

 

We notice some interesting patters. First, we 
see that P1 and P2 are never required to fly. 
This is due to the fact that these two have 
the greatest hourly rates. As such, one 
possible application of this model is a 
business decision assistant: a business 
analyst could make the recommendation that 
contract of P1 and P2 be renegotiated on 
these grounds.  

As we predicted we see that at every day, P4 
is chosen first, and then either P3 or P4. This 
is again due to the rank ordering of the 
pilot’s hourly rates. This implies that there is 
not exactly one optimal solution for cases 
like these. In practice we can look at this as 
an advantage: it allows us to accommodate 
things such as leave and delays of the pilots.  

Of course, it is important to realize that this 
at scale can produce much finer results. 
Considering a post-optimality analysis is 
essential for understanding the function of 
this model. First, we can consider variations 
in the hourly wages of the pilots.  

Using the algorithmic approach, we can 
understand that as the rates change, so does 
the favoring of the binary linear 
programming model. This allows us to 
gauge which pilots will be assigned first as 
well as which ones will not be assigned at 
all.  

Second, as the time tables of the flight shift 
so will the cost function. Indeed, if it were to 
be the case that a pilot could only fly one 
flight a day due to FAA regulations, or some 
other various reason, the model presented 
here could capture that. Further, should the 
airline’s database of pilots not be 
sufficiently large for the flights, our model 
would be able to be used to inform decision 
makers of this gap, and they would begin 
recruiting more pilots.  

The results here relate to the original goals 
because we have a functioning binary linear 
programming model that allows us to map a 
list of flights and pilots to an assignment 
matrix. These results are similar to those 
found previously with the goal of taking 
requirements and regulations into account as 
we schedule crews, such as in (Oliver 
Weide, 2010) which discussed iterative 
solution methods. Indeed, we assert that this 
model can be constructed with an iterative 
approach as shown in Figure 1, however 
with binary linear programming we achieve 
a more robust model because it is more 
capable of being altered and added to. This 
would be a crucial feature for commercial 
use.  



 

VIII. Conclusions and Future Research 

Shown here is a binary linear programming 
method for scheduling pilots on flights. This 
has applications in areas of transportation 
science, operations research, and perhaps 
most so in commercial airline operations, 
which seek to maximize profit and minimize 
cost. The strength of a binary linear 
programming approach is the ease of adding 
and changing constraints. Certain 
regulations will vary as laws and 
requirements change. It is therefore 
advantageous to have a system readily in 
place that can accept these changing 
parameters. 

Thus, we propose two strong areas to extend 
this research. The first is the simple addition 
of requirements. For example, night flying 
and day flying can be considered differently, 
which then takes into account changing time 
zones as well as progressions of sunrise/sun 
set.  

Another interesting way to extend this 
research is the relaxation of the assumptions 
made here. In particular ways to represent 
and control for flights that have overlapping 
windows of time in the air would be useful 
for airlines to have. This would allow then 
for the model to ensure that there are no 
instances in which a pilot is assigned to a 
flight that departs before the current flight 
ends. This would require careful 
consideration of the variables to mitigate 
computational exploding that comes with 
temporal analysis using binary linear 
programming.  

These extensions will not only develop 
methods of binary linear programming 
discussed here, but provide a more useful 

and applicable product to airlines for 
commercial implementation.  
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